Developing fractal curves

نویسندگان

  • Geoffrey Irving
  • Henry Segerman
چکیده

Many fractal curves can be produced as the limit of a sequence of polygonal curves, where the curves are generated via an iterative process, for example an L-system. One can visualise such a sequences of curves as an animation that steps through the sequence. A small part of the curve at one step of the iteration is close to a corresponding part of the curve at the previous step, and so it is natural to add frames to our animation that continuously interpolate between the curves of the iteration. We introduce sculptural forms based on replacing the time dimension of such an animation with a space dimension, producing a surface. The distances between the steps of the sequence are scaled exponentially, so that self-similarity of the curves is reflected in self-similarity of the surface. For surfaces based on the constructions of certain fractal curves, the approximating polygonal curves self-intersect, which means that the resulting surface would also self-intersect. To fix this we smooth the polygonal curves. We outline two very different approaches to producing and smoothing the geometry of such a “developing fractal curve” surface, one based on a direct parameterisation, and the other based on Loop subdivision of a coarse polygonal control mesh.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-similar fractals and arithmetic dynamics

‎The concept of self-similarity on subsets of algebraic varieties‎ ‎is defined by considering algebraic endomorphisms of the variety‎ ‎as `similarity' maps‎. ‎Self-similar fractals are subsets of algebraic varieties‎ ‎which can be written as a finite and disjoint union of‎ ‎`similar' copies‎. ‎Fractals provide a framework in which‎, ‎one can‎ ‎unite some results and conjectures in Diophantine g...

متن کامل

Dose Verification in Intensity Modulation Radiation Therapy: A Fractal Dimension Characteristics Study

PURPOSE This study describes how to identify the coincidence of desired planning isodose curves with film experimental results by using a mathematical fractal dimension characteristic method to avoid the errors caused by visual inspection in the intensity modulation radiation therapy (IMRT). METHODS AND MATERIALS The isodose curves of the films delivered by linear accelerator according to Pla...

متن کامل

On Approximating Rough Curves With Fractal Functions

Fractal functions are explored as a representation for rough data in computer graphics. Two new techniques for using fractal interpolation functions to approximate rough functions and curves are introduced. The first is based on a Hough transform of fractal function transformation parameters. The second is based on previous techniques in fractal image compression. These techniques are then demo...

متن کامل

Single Feed Circularly Polarized Poly Fractal Antenna for Wireless Applications

A circularly polarized fractal boundary microstrip antenna is presented. The sides of a square patch along xaxis, yaxis are replaced with Minkowski and Koch curves correspondingly. By using the fractal curves as edges, asymmetry in the structure is created to excite two orthogonal modes for circular polarization (CP) operation. The indentation factors of the fractal curves are optimized for pur...

متن کامل

Grammatical evolution to design fractal curves with a given dimension

Lindenmayer Grammars have been applied frequently to represent fractal curves. In this work, the ideas behind Grammar Evolution are used to automatically generate and evolve Lindenmayer Grammars that represent fractal curves with a fractal dimension that approximates a pre-defined required value. For many dimensions, this is a non trivial task to be performed manually. The procedure we are prop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012